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Abstract

Given the response to the Fleischmann–Pons news conference in 1989, it became clear to many researchers in the field that excess
heat was not convincing enough evidence to prove that nuclear processes were occurring inside a metal lattice. Skeptics attributed
the excess heat to recombination of deuterium and oxygen gases and/or poor calorimetry, despite the fact that control experiments
showed that this was not the case. Consequently, a number of researchers redirected their efforts from measuring heat to looking
for nuclear products such as neutrons, charged particles, X- and gamma rays, and transmutation. The results of these efforts are
discussed in this communication.
© 2012 ISCMNS. All rights reserved.
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1. Introduction

When Stanley Pons and Martin Fleischmann held their press conference on March 23, 1989, the only evidence they
had that nuclear processes were occurring inside the palladium lattice was excess heat. Their electrochemical cells
were producing more heat than could be accounted for by chemical means. The lack of collaborating nuclear products,
particularly neutrons, outraged many scientists. But that did not stop many scientists world wide from going into
their laboratories to replicate the Fleischmann–Pons experiment and to look for evidence that the effect had a nuclear
origin. Many of these efforts failed and the reasons for the failures are now understood. They include improper cell
configurations causing inhomogeneous deuterium loading of the palladium, cracks in the palladium rods used in the
experiments which impeded deuterium loading, and the lack of recognition that there was an incubation time needed
to load the palladium rods with deuterium. In each of these instances, the experimental conditions used failed to
achieve the high deuterium loadings and flux inside the lattice needed to initiate the effect. Since the Fleischmann–
Pons announcement, continuing research, using a wide variety of techniques from electrolysis, gas loading, to glow
discharge, has yielded evidence that supports the nuclear nature of the effect. Nuclear products that have been observed
include tritium, neutrons, charged particles, gamma and X-rays, transmutation, as well as helium-4. A brief discussion
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of the experiments performed and their results follows. It is by no means complete. Yet it does illustrate the number
of techniques and approaches that have been taken to measure LENR nuclear products. The fact that these different
approaches yield similar results strengthens the validity of those results.

2. Neutrons and Tritium

In the March 23, 1989 press conference, Pons claimed that they had “established a sustained nuclear fusion reaction
by means which are considerably simpler than traditional techniques.” He further claimed that the deuterium is driven
inside a metal rod to such an extent that fusion between the deuterons occurs. Because of these claims, researchers
conducted experiments looking for DD fusion products.

In thermonuclear fusion, the DD fusion reactions are:
2
1D + 2

1D → 3
1T (1.01 MeV) + p+(3.02 MeV), (1)

2
1D + 2

1D → 3
2He (0.82 MeV) + n0(2.45 MeV), (2)

2
1D + 2

1D → 4
2He + γ (23.82 MeV). (3)

In thermonuclear fusion, the branching ratio for reactions (1) and (2), n/T, is 1. That is, 50% of DD fusion follows
reaction (1) and 50% follows reaction (2). Reaction (3) occurs 10−6 of the time and is negligible. If deuteron fusion
reactions were occurring inside the palladium lattice and if those reactions were similar to what was observed in plasma
fusion, expected products would include tritium and neutrons. Because of these expectations, early investigators focused
on detecting tritium and 2.45 MeV neutrons.

When researchers at India’s Bhabha Atomic Research Center (BARC) heard the Fleischmann–Pons announcement,
they began to conduct electrolysis experiments using a Milton-Roy electrolytic cell, Fig. 1(a) [1]. The cathode area was
300 cm2 and the cells could operate up to 100 A current. During electrolysis, the cell was monitored using two different
kinds of neutron detectors – BF3 counters embedded in paraffin blocks for thermal neutron detection and proton recoil
plastic scintillator counters for fast neutron detection. The background was monitored using 3He counters embedded in
paraffin. At the same time they recorded cell current, voltage, and temperature, and they collected samples for tritium
analysis. Figure 1(b) shows the results of the BF3 and proton recoil neutron detectors during the first run in April of
1989. Clearly the detectors track one another. As the current was slowly increased to 100 A, the cell overheated which
caused the trip circuit to turn off cell power. This was followed by a burst of neutrons that was approximately two orders
of magnitude larger than background levels over a 2 min interval. Of the 11 cells, six saw a neutron signal within 9 h
of operation, one within 24 h, and two showed a neutron signal after 2 weeks. The neutron emissions were observed
to stop after continued electrolysis. It was also observed that high D/Pd loadings were not required to obtain a neutron
emission. But more importantly, it was observed that, although neutrons and tritium were produced simultaneously, the
branching ratio (n/T) was not 1 as observed in thermonuclear fusion. For the Pd/D system, the n/T ratio was measured
to be ∼10−7.

Iwamura et al. [2] of Mitsubishi Heavy Industries gas-loaded palladium foils with deuterium to a D/Pd loading of
0.66. Once loaded, the deuterated foils were sealed with either a thin aluminum or gold film. The samples were then
placed in a vacuum chamber and set on a heater. The chamber was equipped with two 3He neutron detectors, a NaI
scintillator detector for gamma-ray spectroscopy, and a high-resolution quadrupole mass spectrometer for gas analysis.
The samples were heated to 400 K causing the release of deuterium. During deuterium gas desorption from the samples,
they observed the emission of neutrons and tritium as well as charged particles. No gamma rays were detected using
these palladium structures.

A consortium of scientists from the Russian Academy of Sciences, Hokkaido University, New Hydrogen Energy
Laboratory in Sapporo Japan, and Osaka University conducted experiments using Au/Pd/PdO heterostructures [3].
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Figure 1. (a) Schematic of a Milton-Roy electrolytic cell used in the BARC experiments. AgPd tubes are 200 mm in height and 3 mm in diameter.
(b) Neutron counts measured as a function of time using a proton recoil counter (top) and a BF3counter (bottom). Dotted lines indicate background
count rates for both detectors. Reproduced with permission from Srinivasen

These heterostructures possess high deuterium loading capacity, high mobility of deuterium at the Pd–PdO interface, and
a screening potential, US , of 600 eV. After electrochemically loading the Au/Pd/PdO heterostructures with deuterium,
they took the samples out of the electrolyte and monitored the exothermic desorption of deuterium using a detection
system based upon a liquid scintillator that responds to neutrons and gamma rays, a silicon surface barrier detector that
detects energetic particles, and CR-39 detectors that responds to both charged particles (alphas, protons, and tritons)
and neutrons. Using this array of detectors, they saw charged particles with energies between 1 and 3 MeV and neutrons
between 2.4 and 2.8 MeV. They concluded that the energies of the charged particles and neutrons were consistent with
those resulting from DD fusion reactions, (1) and (2). However, they were not able to determine the branching ratios
of those reactions.

Other researchers who have measured tritium in electrolytic cells include Ed Storms [4] of Los Alamos National
Laboratories, John Bockris [5] of Texas A&M State College, and Szpak et al. [6] of SPAWAR Systems Center Pacific.
Storms measured tritium, in both the gas and liquid phases, during electrolysis using palladium and palladium alloys
with lithium, carbon, sulfur, boron, and beryllium. In these studies, excess tritium was observed in ∼10% of the cells.
No excess tritium was measured for the Pd alloys, which were prepared by arc-melting Pd powder with the other
element under an argon atmosphere. Storms also looked at the effect of various surface treatments on the production of
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tritium. He showed that palladium heated in dihydrogen sulfide to form a sulfide layer did not produce excess tritium
while some cells using palladium heated in paraffin vapor did show excess tritium. Of the solution additives examined
(thiourea, wheat flour, iron, silver, mercury, uranium-238, lithium sulfide, arsenic trioxide, and silver sulfide), only
wheat flour and arsenic trioxide sometimes gave excess tritium.

John Bockris [5] also measured tritium in both gas and liquid phases. Out of 58 experiments using bulk palladium
cathodes, 18 showed tritium production. He showed that the tritium production occurred in bursts and that the tritium
did not correlate, either temporally or quantitatively, with the heat production. These experiments showed that the
measured tritium was less than 0.1% of that needed to produce the observed heat, assuming DD reaction (1) is the heat
producing channel.

Szpak et al. [6] used the palladium/deuterium co-deposition process in their experiments. Instead of bulk palladium
electrodes, they started with a solution of palladium ions. When a current is applied, palladium plates out onto a
cathode in the presence of evolving deuterium gas. Measurements were made of both the gas and the liquid. Out of ten
experiments, six gave excess tritium. The tritium production was observed to occur in bursts. John Bockris replicated
the co-deposition process and saw excess tritium in six out of nine cells. While the co-deposition process produced
tritium more reliably than bulk palladium, the amount of tritium produced using the co-deposition process was orders
of magnitude less than what had been observed for those bulk palladium cathodes that did produce tritium.

Claytor et al. [7], of LosAlamos National Laboratories, have shown tritium production from a low-voltage deuterium
discharge on palladium and other metals. In their procedure, a wire is oriented perpendicular to and a few millimeters
above a circular plate. Deuterium gas is added to the chamber and the wire is then pulsed negatively with currents
between 2 and 5 A (voltages varied between 1500 and 2500 V) to create a light blue plasma (D2+) with areas of pink
(D3+ or D+). Tritium concentration in the gas was monitored continuously using a Femtotech tritium gauge. At the end
of the experiment, the tritium concentration was verified by collecting the gases, running them through a recombination
chamber to convert the tritiated deuterium gas into tritiated heavy water. The tritium content of the resultant liquid was
then determined using a liquid scintillator. The real-time measurements showed no tritium production when platinum
wires were used in both hydrogen and deuterium gas discharges. No tritium was observed for the palladium/hydrogen
gas system. However the palladium/deuterium gas system produced tritium at rates of 0.1–0.2 nCi/h (background is
0.002–0.01 nCi/h). It was found that the tritium output depended upon the temperature, pressure, and current applied
to the cells. It was also sensitive to the purity and metallurgical condition of the palladium used in the experiments.

Neutrons have been measured by Mizuno et. al. [8] of Hokkaido University, Francesco Scaramuzzi [9,10] of
ENEA in Italy, Roussetski [11] of the P.N. Lebedev Physical Institute in Russia, and Mosier-Boss et al. [12,13]. In
their experiments, Mizuno et al. [8] used three 3He neutron detectors placed 50 cm above and apart from the cell.
To reduce noise, the detectors were covered with an electromagnetic shield. Neutron emissions were detected by the
coincidence and the anti-coincidence method with one detector that was covered with a cadmium film. The palladium
wire cathodes used in these experiments were 3 cm long and 1 mm in diameter. After first loading the palladium wires
in a heavy water electrolyte for 3 h, they were placed in a light water electrolyte and the cell voltage was increased from
30 to 85 V. With this voltage change, seven out of ten cells gave bursts of neutrons that lasted between 2.6 and 200 s.
Total neutron counts during these bursts ranged from 25,800 to 1,573,800.

Shortly after the 1989 Fleischmann–Pons announcement, Scaramuzzi et al. [9,10] began to conduct deuterium
gas-loading experiments of titanium shavings. Like palladium, titanium also absorbs hydrogen isotopes. A BF3
neutron detector was used to monitor the gas loading, After immersion in a liquid nitrogen Dewar for a short period
of time, the stainless steel chamber containing the deuteriated titanium was taken out of the Dewar to warm up and to
create non-equilibrium conditions. Two events of neutron bursts were observed. The first event lasted for forty hours.
However, the reproducibility of these experiments was very poor. In 2003, Keeney et al. [14] reported on similar gas
loading experiments using titanium foil. They used 3He neutron detectors. The reproducibility of their experiments
was 40%. They also looked at electrolytic loading of the titanium foils. Although neutron emissions were observed,
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the reproducibility was much less than that observed for the gas loading experiments.
In 2000, Roussetski [11] prepared PdO/Pd/PdO and PdO/Pd/Au samples that were electrochemically deuterated.

After electrolysis, each sample was placed on CR-39, a solid state nuclear track detector (SSNTD), and the sample
was heated to ∼50◦C to stimulate desorption of deuterium. This process was repeated a number of times. Analysis
of the detectors showed tracks consistent with DD reaction products as well as triple tracks that are diagnostic of the
carbon shattering reaction, 12C(n,n’)3α, caused by a ≥ 9.6 MeV neutron. In plasma fusion, one potential source of
these neutrons is the DT thermonuclear fusion reaction:

2
1D + 3

1T (≤ 1.01 MeV) → 4
2He (6.7 − 1.4 MeV) + n0(11.9 − 17.2 MeV). (4)

However, Roussetski found that the mean DT neutron flux emitted from the deuterated samples was higher than the
yield of tritons from DD fusion reaction (1), suggesting that there was either another source of fast tritons or fast
neutrons. This was the first evidence suggesting that both primary and secondary fusion reactions were occurring in
the palladium/deuteride system.

Mosier-Boss et al. [12,13] have been monitoring their palladium/deuterium co-deposition experiments using CR-
39. Using these detectors, they have observed tracks on both the front and the backsides of the detectors. The only
particles that can traverse through 1 mm thick CR-39 detectors are ≥40 MeV alphas, ≥10 MeV protons, or neutrons.
The size distribution of the tracks on the backside of the CR-39 detectors was consistent with the energy of protons
and neutrons observed in DD fusion reactions (1) and (2), respectively, and of neutrons that are observed in DT fusion
reaction (4). They also observed triple tracks [12] in the CR-39 detectors, like those shown in Fig. 2(a). In Fig. 2(a),
the right hand images, which are an overlay of an image taken with the microscope optics focused on the surface of the
detector and another taken with the optics focused on the bottom of the track, clearly show three particles breaking away
from a center point. Very few of these triple tracks, usually between five and ten, are observed in the CR-39 detectors
used in the co-deposition experiments. These triple tracks have been observed on both the front and backsides of the
detectors. Figure 2 compares DT fusion generated triple tracks, with the palladium/deuteride generated triple tracks.
It can be seen that the features of the palladium/deuteride generated triple tracks, Fig. 2(a), are indistinguishable from
those of DT fusion generated triple tracks, Fig. 2(b).

3. Charged Particles

If DD fusion reactions were occurring inside the palladium lattice as conjectured by Pons and Fleischmann in their
March 23, 1989 press conference, these reactions should produce charged particles in addition to neutrons. Techniques
used to measure these charged particles include silicon surface barrier detectors, solid state nuclear track detectors such
as CR-39, and scintillating detectors.

Shortly after the Fleischmann–Pons announcement, Ed Cecil [15] of the Colorado School of Mines implanted
deuterium in a 6 µm thick palladium film. When an electric current was passed through the thin fim, 5 MeV charged
particles were detected using a silicon surface barrier detector. The same experiments using thin deuterated titanium
films gave similar results. George Chambers [15] of NRL bombarded titanium foils with 350 eV deuterons and detected
4.9 MeV charged particles. Of 13 experimental runs, four produced charged particles and five did not. In four of the null
experiments, the titanium foil delaminated from the base thereby voiding the run. Iida et al. [16] of Osaka University
also conducted deuteron implantation experiments on titanium foils. When titanium foils with an aluminum oxide layer
were bombarded with 243 eV deuterons, peaks in the 5–12 MeV range were observed. These peaks were attributed to
alpha particles resulting from multibody fusion reactions as proposed by Takahashi, also of Osaka University. In 2003,
Keeney et al. [17] reported on gas loading experiments on titanium foils. Using a PMT/dual scintillator system, they
were able to detect 2.6 MeV protons.

In 1990, Li et al. [18] of Tsinghua University in China were the first to use CR-39 SSNTDs to detect charged
particle emission in palladium. In these experiments, palladium foil was in direct contact with the CR-39 detector. The
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Figure 2. Photomicrographs of (a) Pd/D co-deposition generated and (b) DT neutron generated triple tracks. In (a) and (b), the left-hand images
were taken with the microscope optics focused on the surface of the detectors. The right-hand images are an overlay of two images taken at two
different focusing depths (surface and bottom of the tracks). Reproduced with permission from Mosier-Boss.

palladium was then gas loaded with either hydrogen or deuterium. No tracks were observed for the hydrogen loading
experiments. However, a large number of tracks in the CR-39 were obtained as a result of the palladium/deuteride
experiment. It was found that when palladium was cleaned in aqua regia, no tracks were obtained. Li et al. concluded
that the aqua regia treatment poisoned the surface of the palladium. From these results Li et al. concluded that the
observed nuclear effects were related to some surface phenomenon.

The Y1Ba2Cu3O7−8 (YBCO) high temperature super conductor has the ability to absorb hydrogen. Pellets or
powders of Y1Ba2Cu3O7−8 were placed in contact with CR-39 detectors. The pellets/powders were then gas loaded
with deuterium. After a one to two days exposure to the deuteratedY1Ba2Cu3O7−8 pellets/powders, the CR-39 detectors
were etched. Microscopic examination of the detectors showed tracks with a density of ∼3 × 105tracks cm−2 [19].

As discussed vide supra, Lipson et al. [3] used CR-39 detectors to detect charged particles emitted from the
deuterated Au/Pd/PdO heterostructures. In these experiments, the heterostructures were electrochemically loaded with
deuterium Once loaded, the heterostructures were placed contact with the CR-39 detectors and the temperature was
cycled to induce desorption of deuterium. Tracks consistent with 2.5–3.0 MeV protons and 0.5–1.5 MeV tritons were
observed in the CR-39 detectors.

In 2002, Oriani and Fisher [20] were the first to report the use of CR-39 detectors in an electrolysis experiment.
They placed the detectors above and below the Pd foil cathode so as to not impede uniform loading of the cathode with
deuterium. Because charged particles cannot travel far in an aqueous medium (10 µm of water slow alpha particles by 2
MeV), this is not the optimum geometry to detect charged particles. During each run, control detectors were immersed
in bottled electrolyte solution. Track densities ranged between 59 and 541 tracks cm−2 for the control detectors and
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156–3760 tracks cm−2 for detectors used in active cells. They concluded that the reactions responsible for the particles
causing the tracks did not occur at the distant cathode but most likely occurred in the electrolyte very close to the plastic
surface. Their more recent experiments involving sequential etching of the detectors show additional tracks deeper
inside the plastic. The tracks could either be due to recoils from neutrons or from ≥10 MeV protons.

Also in 2002, Lipson et al. [21] at the University of Illinois began to conduct in situ electrolysis experiments in
which the CR-39 detectors were in direct contact with palladium foils. They observed tracks due to charged particles in
the detectors and concluded that the cathode was the source of those particles. Using Cu spacers between the cathode
and the detector, they were able to identify the particles as being 11–16 MeV alphas and ∼1.7 MeV protons.

Mosier-Boss et al. [22,23] have used CR-39 detectors in their palladium/deuterium co-deposition experiments.
Track density was highest where the cathode had been in contact with the detector indicating that the source of the
tracks is the cathode. The distribution of tracks along the cathode was inhomogeneous indicating that some Pd sites
were more active than others. Control experiments showed that the tracks were not due to radioactive contamination
of the cell components; nor were they due to impingement of the deuterium gas bubbles on the surface of the detector;
nor were they the result of chemical attack by D2, O2, or Cl2 gases; nor were they due to the metal dendrites of the
palladium deposit piercing into the plastic. Spacer experiments indicated that the charged particles formed had energies
on the order of 1–3 MeV.

Karabut et al. [24] of the Scientific Industrial Association LUTCH in Russia have conducted glow discharge
experiments using palladium in deuterium gas. They used both silicon surface barrier and CR-39 detectors in these
experiments. The silicon surface barrier detectors measured charged particles up to 18 MeV in energy. Tracks were
observed in the CR-39 detectors. The measured track density was on the order of 2 × 105 tracks cm−2.

4. Gamma/X-rays

The first evidence of gamma/X-ray emission is shown in Fig. 3(a). At the end of a deuterium plasma loading experiment,
Srinivasan [25] of BARC placed the titanium rod on a sheet of Polaroid paper. Figure 3(a) is the positive image of
the Polaroid negative. Dark areas are regions of greater activity. Srinivasan attributed the observed image to be due
to X-rays from tritium generated in the titanium rod. This same electrode was repeatedly autoradiographed over a
one-year period, revealing the same pattern.

Knowing of the BARC results, McKubre [26] of SRI took a palladium cathode that had produced excess heat and
placed it between two layers of Polaroid film for 12 days. The negative image is shown in Fig. 3(b). Fogging of the film
was observed indicative of some type of ionizing radiation. The points of light with diffuse halo exposure suggest that
some of the radiation may be coming from point sources within the metal and being scattered by the lattice structure.

At the end of a palladium/deuterium co-deposition experiments on a silver disk, Szpak [22] placed a plastic sheet
over the cathode and a piece of photographic film on top of that. After a week, the film was developed and the positive
image is shown in Fig. 3c. The one aspect that all three images have in common is that the emission of X-rays is
inhomogeneous and that some sites are more active than others. Measurements of co-deposition experiments using
high purity germanium (HPGe) and lithium-doped silicon detectors showed that the emission of radiation was sporadic
and of limited duration [27]. They also showed that the energy distribution was broad with the occasional emergence
of peaks near 20 and 8–12 keV.

Miles [28] of China Lake placed dental film around his calorimeter cells using bulk palladium cathodes. He also
observed fogging of the film. The film closest to the cathode showed the greatest exposure. Karabut et al. [24] also
reported on the emission of 200 keV gamma rays in their glow discharge experiments.

Violante et al. [29] of ENEA and SRI conducted electrolysis experiments using thin films of copper and/or nickel
or palladium. The experiments were monitored using a HPGe detector optimized for the 2–22 keV energy range. The
copper/palladium cathodes gave signals significantly above background in the energy range where the palladium X-ray
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Figure 3. Autoradiographs of cathodes used in LENR experiments. These autoradiographs were obtained by placing photographic film in contact
with the cathode over a period of 7–12 days. In the positive images, dark areas show greater activity while the reverse is true for negative images. (a)
Positive image of a titanium rod that has been plasma loaded with deuterium. Reproduced with permission from Srinivasan. (b) Negative image of a
bulk palladium cathode that had produced excess heat for SRI. Reproduced with permission from McKubre. (c) Positive image of a cathode used in
a palladium/deuterium co-deposition experiment. A 100 µm thick plastic sheet separated the cathode from the photographic film. Reproduced with
permission from Mosier-Boss.

lines occur. For the copper/nickel cathodes, X-ray emissions and a change in the copper-63/copper-65 isotopic ratios
were observed after the deuterium-loaded cathodes had been irradiated with a HeNe laser for 3 h.

Prelas et al. [30] of the University of Missouri used a Maxwellian plasma and sub-atmospheric deuterium gas
to load palladium metal. The experiments were monitored using both a BF3 neutron detector as well as a sodium
iodide (NaI) gamma-ray detector. In these experiments, it was observed that an increase in the neutron counts and
gamma-ray readings occurred whenever the deuterium plasma was formed. The NaI detector showed a mysterious,
broad gamma-ray peak at 8.1 MeV.

5. Transmutation

Kevin Wolf [31] of Texas A&M State College was electrolyzing three palladium cathodes simultaneously. The ex-
periment was monitored using both a neutron and a gamma ray detector. During the electrolysis, the neutron counts
increased from a background of 24 counts/h up to 150 counts/h, then leveled off to 100 counts/h over a 21 h period.
During that time interval, the gamma ray counts stayed at background levels. After 21 h, the neutron counts dropped
back to background, but the gamma ray counts increased. Upon termination of the experiment, it was found that all
three cathodes had become mildly radioactive. Gamma ray spectra of the cathodes obtained using a germanium detector
showed the presence of isotopes of rhodium, silver, and ruthenium that had not been present prior to the experiment.

John Bockris [32] analyzed his bulk palladium cathodes before and after his electrolysis experiments. The analysis
of the cathode was done at 1 µm in depth. He observed the production of magnesium, silver, silicon, calcium, titanium,
iron, copper, zinc, and platinum. Similar results were reported by Mizuno [33]. In addition to the elements Bockris had
observed, Mizuno also detected chromium. He also showed that the new elements accumulated in holes and cracks on
the bulk palladium cathode which formed during electrolysis. Also some of the new elements had isotopic distributions
different from the natural ones, with the largest deviations found within the outermost 1 µm layer of the cathode. Using
thin palladium films, Miley et al. [34] of the University of Illinois observed significant shifts in isotope ratios from
natural abundance of a number of elements.

John Dash [35] of Portland State University conducted electrolysis experiments using titanium cathodes. Excess
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heat was produced at the rate of about 1.2 W during electrolysis of heavy water. Analysis of the electrodes before and
after electrolysis with a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDS) revealed that
new surface topographical features with concentrations of unexpected elements (V, Cr, Fe, Ni, and Zn) formed during
electrolysis. He also did palladium/deuterium co-deposition experiments on bulk palladium foils. These experiments
showed that co-deposition enhanced the production of excess enthalpy. SEM-EDS analysis of the cathodes showed the
presence of silver.

Szpak et al. [36] performed palladium/deuterium co-deposition experiments on gold foil in the presence of either an
external electric or magnetic field. Upon termination of the experiments, the cathodes were subjected to SEM analysis.
Fractal structures, craters, and micro-volcano like features were observed in the SEMs. These features are suggestive
of localized melting of the palladium deposit. Elemental analysis of these features using EDS showed the presence of
new elements such as silicon, aluminum, calcium, magnesium, iron, zinc, chromium, and nickel. The distribution of
these new elements on the surface of the cathodes was not uniform indicating that their presence could not be the result
of contamination.

A consortium of Italian scientists did hydrogen and deuterium gas loading of palladium samples [37–39]. Once
loaded, these samples were irradiated with either a HeNe or a 308 nm excimer laser. SEM analysis of the palladium
showed the formation of small craters and caverns. Associated with these craters were the following new elements:
aluminum, silicon, sulfur, chlorine, iron, cadmium, platinum, chromium, magnesium, titanium, and zinc.

Glow discharge experiments done by Karabut [40] and others also yielded new elements. The new elements obtained
are the same as those obtained in the electrolysis experiments described above.

Iwamura et al. [41]observed transmutation that was induced by deuterium gas permeation through palladium
complexes. A schematic of their experimental set-up is shown in Fig. 4(a). Figure 4(b) shows a schematic and an SEM
of one of their palladium complexes. When the source metal is cesium, in situ X-ray photoelectron spectroscopy (XPS)
measurements showed a decrease in the cesium peaks with a simultaneous emergence of peaks due to praseodymium
as deuterium permeated through the sample. This was confirmed by ex situ X-ray fluorescence (XRF) measurements
of the samples. When the source metal was strontium, gas permeation studies showed a decrease in strontium with a
simultaneous increase in molybdenum. Secondary ion mass spectrometry (SIMS) analysis showed significant changes
in the isotopic ratios of the molybdenum, as shown in Fig. 4(c).

6. Helium-4

In 1991, Miles et al. [42] showed that helium-4 production temporally correlated with the excess heat production. In
these experiments, the gases evolved during electrolysis were collected and were sent away for analysis using a high
resolution mass spectrometer. Helium-4 was observed in those samples collected when the cell was giving off excess
heat.

In 1991, Bockris et al. [43] terminated an electrolysis experiment in which the palladium cathode was producing
tritium. The cathode was removed from the cell and immersed in liquid nitrogen for a week to prevent helium from
permeating out of the cathode. The cathode was then cut up into smaller pieces, packed in dry ice, and sent away
for analysis by high resolution mass spectrometry. To determine the helium-4 content, the sample was melted in a
resistance-heated tungsten-wire crucible in the mass spectrometer’s high temperature vacuum furnace. Excess helium-
4 was observed in nine out of the ten pieces of this tritium-producing cathode. The amount of helium-4 in these nine
pieces varied between 1.7 and 166.8 billion helium-4 atoms. Background samples contain 0.5 billion helium-4 atoms.
The majority of the helium-4 was found in the near-surface regions of the cathode and not within the bulk. No helium-4
was observed above background in the non-electrolyzed palladium from the same virgin stock or in that platinum anode
material. Because earlier helium-4 claims suffered from the criticism of possible permeation through the glass cells,
this was the first substantiated report of the production of helium-4.
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Figure 4. (a) Schematic of the Iwamura deuterium gas permeation experiment. (b) Structure of the palladium complex comprised of M/Pd
(400 Å) /CaO and Pd (1000 Å) / Pd (0.1 mm), where M = Cs, Sr, and Ba. (c) Comparison of the natural molybdenum (left) with that observed in the
palladium complex (right). Reproduced with permission from Y. Iwamura.

In 1998, McKubre et al. [44] of SRI reported that they had completed a replication of Miles’results. They conducted
open cell electrolysis in metal sealed cells incorporating active exclusion of helium-4. The evolving gases were likewise
collected in metal vessels and were analyzed by high-resolution mass spectrometry. In three instances when excess
power was measured, helium-4 was found in the electrolysis gases. If the helium-4 results from reaction (3), the helium-
4 found in the gases constituted only 76% of expectation. However, the results of Bockris et al. [43]showed that helium
can be trapped inside the palladium. McKubre et al. [44] concluded that, if helium-4 is produced in association with
excess power, it is not released to the gas phase immediately, or completely.

Following the Miles’ replication, McKubre et al. [44] conducted electrolysis experiments in a closed cell system
using bulk palladium. The cell was leak tight and was designed to allow sampling of the gases in the headspace. During
a period of excess power, the gas phase contained only 62% of the helium-4 expected if reaction (3) was the source
of the helium-4. The remainder of the helium-4 was retained in the cathode as was determined, in situ, by subjecting
the cathode to an extended period (∼200 h) of compositional and thermal cycling by varying the current density in
both anodic and cathodic directions. The high anodic currents used in this process increased the temperature of the
palladium electrode by ∼30oC and caused microcracks to form. Both the temperature increase and anodic current
drove deuterium out of the lattice thereby quenching the nuclear processes occurring inside. The microcracks formed
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in the cathode provided a means for helium-4 to escape. This was the first quantitative correlation between heat and
helium-4.

De Ninno et al. [45] of ENEA in Italy sputtered palladium on an inert surface, wound in a ‘bustrophedic’ geom-
etry. The resultant cathode is 100 cm long, 50 µm wide, and 2 µm thick. The cathode was loaded with deuterium
electrolytically. The gases evolved during the experiment were collected in a storage vessel. A 6.29% aliquot of this
gas was periodically sent to a high resolution mass spectrometer for analysis. Excess heat was measured using a Peltier
element that was in good thermal contact with the cathode. Whenever the cathode temperature increased, helium-4 in
the gases was measured. As the amount of excess power increased, localized melting of the palladium cathode occurred
which caused the experiments to terminate. Because of the extended damage in many separated subsections, it is highly
unlikely that the melting of palladium was due to the Joule effect.

In 1998, Gozzi et al. [46] built a calorimetric system, with a recombiner, that allowed online sampling of the
residual gases for detection of helium-4 using a high resolution mass spectrometer. Measurements of helium-4 were
not performed in a continuous mode. Consequently, a significant volume of the electrolysis gas mixture is lost without
being analyzed. Despite that, they noticed that helium-4 in the gas stream temporally correlated with the excess heat.
However, the amount of helium was less than the amount predicted if it was produced by reaction (3). At the end of
the experiment, the cathode was cut up into smaller segments. Each segment was heated to melting while under high-
vacuum pumping. The evolved gases were then analyzed, using the mass spectrometer, for helium-4. Unlike Bockris
[43] and McKubre et al. [44], Gozzi et al. [46] did not find any helium-4 inside the palladium cathode. Although
helium-4 diffuses slowly through palladium, the presence of micro-cracks in the palladium would cause helium-4 to be
released more readily into the atmosphere. It should be noted that, unlike Bockris et al. [43], Gozzi et al. [46] did not
immerse the cathode in liquid nitrogen prior to analysis which would have prevented the release of helium-4 through
micro-cracks.

In 1998, Lester Case [47] of Fusion Power Inc. had claimed to see excess heat and helium-4 when palladium on
a carbon supported catalyst was gas loaded with deuterium. McKubre et al. [44] conducted a series of experiments
to verify the Case results. In these experiments, the catalyst was placed in a stainless steel vessel that was connected
to a steel manifold. Periodic measurements of helium-4 were made by direct connection to a high resolution mass
spectrometer. Hydrogen gas loading showed no excess heat or helium-4. In contrast, both heat and helium-4 were
observed to correlate with deuterium gas loading.

Arata and Zhang [48] of Osaka University had reported on obtaining large quantities of excess heat using a ‘double
structured’ cathode comprised of a palladium tube filled with palladium black. McKubre et al. [44] replicated the heat
results of Arata and Zhang. Post analysis of the cathodes showed the presence of both helium-4 and helium-3.

In 2008, Arata and Zhang [49] reported on heat and helium-4 production as a result of deuterium gas loading of
palladium/zirconium oxide nanopowders. No heat or helium-4 were observed in the hydrogen loading experiments.
The heat effects have been replicated by Kitamura et al. [50] of Kobe University.

7. Conclusions

Since the announcement by Pons and Fleischmann in 1989, researchers worldwide have conducted experiments to
detect nuclear ash to show that nuclear processes are occurring inside the metal lattice. Methods to load hydriding
materials, such as Pd, Ti, and YBCO, with deuterium included electrolysis, gas loading, and glow discharge. Both
real-time nuclear diagnostics and constantly integrating detectors have been used in these experiments. Regardless of
the method or the analytical technique used, the following nuclear emissions have been observed: gamma and X-rays,
energetic charged particles and neutrons, and transmutation. These nuclear emissions are consistent with those observed
for primary and secondary fusion reactions. Taking all of the data together, there is compelling evidence that nuclear
reactions can and do occur inside a metal lattice once the appropriate conditions to initiate those reactions have been
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achieved.
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