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Abstract

Relatively inexpensive isoperibolic calorimeters have been designed and constructed with the goal of obtaining a constant heat
transfer coefficient that is insensitive to normal changes in the electrolyte level during electrolysis. Four prototypes were constructed
from copper tubing and used different insulating materials. Preliminary tests on two of these new calorimeters show excellent
stability for the cell temperature measurements, stable heat transfer coefficients during electrolysis, and precise power measurements.
Initial applications include nitrate electrolytes and co-deposition systems. There was no evidence for any shuttle reactions in these
experiments.
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1. Introduction: Design Considerations

An important goal for isoperibolic calorimeters is a constant heat transfer coefficient that does not change as the elec-
trolyte level decreases due to the electrolysis and evaporation. All measurements could then be evaluated with a single,
predetermined value for the heat transfer coefficient. The placement of the thermistors in a secondary compartment
outside the cell has been shown to minimize the cell electrolyte level effect [1-4]. This type of calorimeter can then
be modeled as a fluid in which the electrochemical cell serves as a heating element for the substance in the adjacent
compartment.

The size of the calorimetric system must be carefully considered in the design. Large systems give slower electrolyte
level changes along with larger heat capacities and time constants. Small calorimetric cells yield faster electrolyte level
changes and smaller heat capacities and time constants, but their small cell volumes require more frequent makeup of
H,0 or D,0 additions. The heat transfer coefficient will also increase with the surface area of the calorimetric system.
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Adequate stirring of the cell contents by the electrolysis gases requires thin, tall cells where the cell diameter does not
exceed 3 or 4 cm. All these factors were carefully considered in selecting design features for these new isoperibolic
calorimeters.

Desired features of isoperibolic calorimeters include simple construction and low costs, heat transfer mainly by
either conduction or by radiation (Dewar type), and a wide dynamic range from 20°C to boiling for the cell temperature
with cell input power levels ranging from O to 10 W. This requires heat transfer coefficients near kc = 0.13 W/K if the
heat transfer is by conduction or near kg = 0.83 x 10~°W/K* if the heat transfer is by radiation (Dewar). Because of
the simpler construction and lower costs, isoperibolic calorimeters providing heat transfer by conduction were selected
rather than Dewar cells. It should be noted, however, that a Dewar design fitted with a metallic conductive cylinder
insert containing two thermistors and the glass electrochemical cell has also been proposed (see Fig. A.27 of Ref. [5]).
Although this calorimetric design has never been constructed, it would likely have provided a constant radiative heat
transfer coefficient that would be independent of the electrolyte level (p. 26 of Ref. [5]).

2. Experimental Details of the Calorimetric Design

Four prototype isoperibolic calorimeters (A, B, C, and D) have been constructed from commercial copper tubing and
copper end caps, and two (A, B) have been tested. Each calorimeter consisted of two completely isolated copper
cylinders. The outer copper cylinder for each calorimeter had a 5.1 cm (2.0 in) diameter and a 28 cm height. The inner
copper cylinder (3.2 cm x20 cm) was completely separated from the outer cylinder by the insulating material consisting
of either pipe foam insulation (Cell A) or of tightly packed Oregon timber sawdust (Cell B). The glass electrochemical
cell (2.5 cm x 20 cm) was a large commercial glass test tube (Kimax). This test tube cell was positioned inside the
inner copper cylinder and filled 2/3 full using 50.0 mL of the selected electrolyte. Two thermistors were positioned
on opposite sides of the outer wall of the glass tube with each thermistor level with the center of the cathode used.
Thermal contact between the glass cell and the inner copper tube was provided by Mobil-1 (5-30 W) synthetic motor oil
(50 mL) as the heat conducting fluid. The Mobil-1 oil has a reported density of 0.80 g/mL at 15°C and a heat capacity
of 210 J/gK at 80°C. This 50 mL of Mobil-1 oil filled the secondary chamber well above the cell electrolyte level. It
is expected that this calorimetric design will provide for high cell operating temperatures up to the boiling point of the
selected electrolyte solution.

3. Review of Equations for Isoperibolic Calorimetry

The mathematical equations that model isoperibolic calorimetry have been presented elsewhere [5-8], thus this will
only be a brief review. Full details are given in Appendix Al. The fundamental modeling equation is

Pcalor:PEI+PH+PX+PC+PR+Pgas+PW7 (D

where these individual power terms have all been defined elsewhere [5-8] as well as in Appendix A2. Equation (1)
represents a differential equation because

Pealor = CpM dT/dt, (@)

where Cp, M (J/K) is the heat capacity of the calorimetric system consisting of the molar heat capacity (Cp) of H>O or
D50 in J/K mol and the number of equivalent moles (M) of the H,O or D, O that would yield this heat capacity.
It is useful in initial calculations to assume that there is no anomalous excess power, Px = 0, thus Eq. (1) becomes

Pcalor:PEI+I)I{+O+Pé+PR+Pgas+P\V- (3)
The simple subtraction of Eq. (3) from Eq. (1) yields
0= Px + Pc—P¢ = Px—kcAT +kc AT )
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or
Px = (kc — ko) AT, (&)

where AT = T-Ty. Therefore, the difference between the true conductive heat transfer coefficient (kc) and the pseudo-
heat transfer coefficient (k(-) obtained by assuming Px = 0 provides for a simple calculation of the actual excess power
via Eq. (5). All of the power terms in Eq. (1), however, should be considered in the determination of k’c.

4. Experimental Results

The use of this new isoperibolic calorimetric design requires the evaluation of the conductive heat transfer coefficient,
kc, and the heat capacity, C, M, of the calorimetric system (see Appendix Al). Several experiments using H,O control
electrolytes yielded k¢ = 0.164 W/K for Cell A and kc = 0.133 W/K for Cell B.

These cells differ only by the use of foam insulation in Cell A and packed sawdust insulation in Cell B.

4.1. Heat capacity/differential and integral equations

The experimental cooling curve obtained by simply turning off the cell current provides a convenient method for
determining the heat capacity, C,, M, of the calorimetric system. For a H>O control experiment at zero current, Eq. (1)
becomes

CpM dT/dt = —kc(T — Ty). (6)
This differential equation can be rearranged to
dT /(T — Tp) = —(kc/CpM)dt N
and then integrated to yield
—In(T = Ty,)/(To — Tp) = (kc/CpM)t. ®)

This integrated equation is of the form y = mx where the slope (m) is given by m = kc/CpM.

The experimental cooling curve for Cell B using a H>O control is present in Fig. 1, where 75 is the cell temperature
measured by thermistor 2. This figure shows the expected exponential decrease of 7>— T, with time. Figure 2 shows
the same data using the integrated Eq. (8). The slope m = 0.01752min~' = 2.920 x 10~*s~!. Therefore CoM =
kc/m = 456 J/K. The water equivalent that would give this same heat capacity is 6.06 mol (Cp = 75.291J/mol K for
H,0). The heat capacity of the system can also be calculated using the differential equation (Eq. (6)) directly, but this
is considerably less accurate because of the estimate of d7'/d¢. From Eq. (6), CoM = —kc(T — Ty)/dT /dz). Table 1
presents the value for C, M obtained directly from Fig. 1 at 10, 30, and 65 min. The three values calculated for Cy M
range from 427 to 485 J/K with a mean of 457+29 J/K. It is obvious that more accurate results for C, M are obtained by
use of the integrated equation (Eq. (8)) where the results can be displayed in a straight line form (Fig. 2). The same is
true for all isoperibolic calorimetric results using Eq. (1). Numerical integration of the experimental calorimetric data
along with casting them into the straight line form, y = mx + b, gives the most accurate results as previously reported
[5-9].

The time constants for Cells A and B can be readily calculated once k¢ and Cp M are known because t = C, M/ kc.
This yields T = 3420 s or 57 min for Cell B and 46 min for Cell A.
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Figure 1. Experimental cooling curve for Cell B.

4.2. Estimated heat capacity

The heat capacity of the cell can also be estimated by considering the heat capacity of all materials in the cell or in
contact with the cell that undergo the same temperature changes. These calculations give 208 J/K for the 50.0 mL of
H>0 used, 133 J/K for the 344 g of the inner copper cylinder, 84 J/K for 50 mL of Mobil-1 oil, 31 J/K for 42 g of
the glass cell, and 2 J/K for the copper cathode, platinum wire, palladium and nickel present. The calculated total of
458 J/K is close to the measured value for C, M. For a cell filled with 50.0 mL of D,0O giving 233 J/K, the calculated
total for Cp M would be 483 J/K. Methods for minimizing the effect of errors for Cp M have been previously presented
[3,7].

4.3. Detection of “Heat After Death” effects

It should be noted that cooling curves such as Figs. 1 and 2 provide a useful method for determining lingering excess
power effects or “heat-after-death” when electrolysis ceases in active D,O/Pd experiments. Cell cooling that departs
from Eq. (8) or Fig. 2 would be readily apparent. Such studies of cooling curve behavior are planned for future D, O/Pd
experiments. A previous study of Pd-B/D,0 in a Dewar type cell showed marked deviations from the expected cooling
curve behavior (see pp. 22-23 and Figs. A.23 and A.24 of Ref. [5]). For heat transfer by radiation with no excess
power present, Eq. (1) becomes

CpMAT /dt = —kp(T* — T, )

Table 1. Heat capacity (CpM) for Cell B calculated from
the cooling Curve of Fig. 1 using the differential equation

(Eq. (8)).
T (min) dTy/dt (K/min)  T-Ty(K) CpM (J/K)
10 —10.8 x 1077 3.72 458
30 —8.03 x 1074 2.58 427
65 —3.87 x 1074 1.41 485

Mean CpM = 457 +29 J/K
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when the current is off. The rearrangement and integration of this differential equation yields
IN(T + To)(To=To) /(To + To)(T — Ty) + 2tan™ " (T/Ty)) — 2tan™ (To/ Ty)) = 4T3 ket / Cy M. (10)

Although more complicated than Eq. (8) for heat transfer by conduction, the use of Eq. (10) for Dewar cells in a
previous Pd-B study readily shows the presence of the “heat-after-death” effect [5].

4.4. Experimental Tests for Shuttle Reactions

Potassium nitrate (KNO3) has been widely used for years by electrochemists as an inert supporting electrolyte. However,
it has been proposed that shuttle reactions involving nitrates may give false excess power effects [10]. Theoretically,
the nitrate ion may be reduced at the cathode to form various gaseous nitrogen oxides, nitrite ions (NO, ), or even N3
or NHI. With the use of special electrocatalyts and conditions, some electrochemical reduction of nitrates is possible
[11]. In molten nitrates (LiNO3—KNO3) at elevated temperatures (250°C), there exists a large 4.5 V electrostability
region between the reduction of lithium ions and the oxidation of nitrate ions [12,13]. This demonstrates the stability
of the nitrate ion even at high temperatures. The anodic limit for the nitrate melt is the oxidation of the nitrate ion,
NO3; —NO + O3 + ¢, followed by the further reaction of NO with oxygen to form brown NO; gas [12].

Because of the proposed shuttle reactions involving nitrates [ 10], an initial study using this new isoperibolic calorime-
ter was the investigation of 0.154 M KNOj3 in Cell B. This study used a platinum wire cathode (1 mm x 15 mm) and a
platinum coil anode. The H>O + 0.154 M KNOs3/Pt system was investigated over several days of electrolysis at currents
of 80, 100, and 150 mA. These were no measurable excess power effects. The correct value of k’c = 0.133 W/K was
obtained using Cell B and assuming Px = 0. Therefore kc—k’c = 0 and Px = 0 from Eq. (5). Recent cyclic voltam-
metric studies on KNO3+NaNO; have confirmed that there are no reversible reactions involving nitrates or nitrites that
could act as shuttle reactions.

The measured pH of the 0.154 M KNO3 solution, however, changed from near neutral initially (pH = 7.02) to
pH = 10.24 at the end of this study. Any electrochemical reaction of NOj3 ions to form a neutral product such as
NO3, NO or N results in the production of OH ions to maintain electroneutrality. For the total of 27,626 C used
in this study, the observed pH change could be explained by 0.003% of the current being consumed by the reaction
of NO5 to form a neutral product. The remaining 99.997% of the current was apparently consumed by the expected
H>O electrolysis. The electrochemical reaction of nitrates would, therefore, change the thermoneutral potential (E g )

-In(T) CpM = K¢ / (slope) = 456 J/K
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Figure 2. Cooling curve data of Fig. 1 using the integrated equation where —In (7») represents the left-hand side of Eq. (8).
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by only 4.4 x1073 V. At the highest current used (150 mA), this nitrate reaction would give a calorimetric error of
(4.4 x 1075 V)(0.150 A) = 6.6 x 10~% W or less than 0.007 mW. Therefore, based on this study of 0.154 M KNOj3/Pt,
the use of KNOs as an inert electrolyte in calorimetric studies would be justified. In a related experiment using 0.158 M
KNO3+0.0577 M NaNO3, 99.992% of the current (90,720 C) was consumed by H»>O electrolysis. There are no shuttle
reactions involving nitrates or nitrites that would give a false excess power effect. In both experiments, the volume
of HyO consumed was larger than the theoretical amount based on Faraday’s law, and this provides further evidence
against shuttle reactions.

4.5. Co-deposition/light water controls

This new calorimeter was also used to study the 0.15 M NH4Cl + 0.15 M NH4OH + 0.025 M PdCl, co-deposition
system in HyO. Complete results are given elsewhere [14]. In this case, a chemical excess power effect was detected
early in the experiment due to the solution becoming acidic (pH = 1.25) resulting in chlorine evolution and the formation
of nitrogen trichloride (NCls). Similar excess power effects were measured by the Naval Research Laboratory (NRL)
for this same system using a Seebeck calorimeter [15]. With further electrolysis, the solution becomes more basic,
chlorine evolution ceases, the NCl3 dissipates, and normal calorimetric results are observed [14].

In a new study, NH4Cl1 4+ NH4OH + PdCl, co-deposition was repeated, but following the palladium co-deposition
onto a copper cathode, sufficient LiOH was added to maintain a basic pH. This provided a very stable electrolysis system
with no chlorine or NCl3 formation. The electrolysis of this system using a high current of 400 mA gave evidence for
a stable cell constant that was independent of the electrolyte level. The results for this study in Cell B are given in
Table 2. The mean cell constant over almost 5 h of electrolysis was (ko) = 0.1324 4+ 0.000069 W/K. The cell constants
never varied by more than £0.0001 W/K from the mean value. This is the best evidence to date for an isoperibolic
calorimetric cell where the electrolyte level does not affect the cell constant. We were, therefore, successful in attaining
our major goal for this new isoperibolic calorimeter.

Table 2. Calorimetric data summary for Cell B with I =
400 mA using the PdCl, + NH4Cl1 + NH4OH + LiOH elec-

trolyte.
Time —Eeen (V) ParW) ADHEK) k (W/K)
2:29 5122 1.4564  11.000  0.1324
2:44 5.121 1.4560 10.995 0.1324
4:01 5.110 1.4516 10.970 0.1323
4:53  5.103 1.4488 10935  0.1325
5:51  5.094 1.4452 10915  0.1324
6:46 5.088 1.4428 10.900 0.1324
7:19 5.083 1.4408 10.890 0.1323
The change in the cell voltage with time (¢, min) in Table 2 gives the linear relationship Ecej) = —5.12245841.36 x

10747 (R, = 0.9988). This is the expected behavior for water electrolysis if there are no shuttle reactions or anomalous
F-P effects. The steady electrolysis of water at constant current gradually increases the electrolyte concentration and
decreases the IR (resistive heating) component of the cell voltage. The changes in both Pgy and AT, (Table 2) are
directly related to the changes in E¢.;; when there are no anomalous effects.
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4.6. Co-deposition/heavy water studies

Two calorimetric studies of co-deposition have been completed using heavy water and deuterated compounds. Chlorine
evolution and the related NCl3 formation were avoided by the use of PdCl,+ ND4Cl1 + ND4OD + LiOD/D, O similar
to the very stable H>O study shown in Table 2. Excess power effects were measured in both experiments using an
electrolysis current of 100 mA. For example, k. = 0.09585 W/K with AT = 2.15 K, thus from Eq. (5), Px = 80 mW.
Typically, the excess power ranged from 75 to 105 mW in both experiments. However, the excess power gradually
decreased to near zero in both experiments after several days of electrolysis. It was later found that the deposited
palladium had become detached from the copper cathode substrate and fell to the bottom of the cell in both experiments
resulting in the palladium becoming electrochemically isolated. New experiments are planned where the copper cathode
will be positioned close to the cell bottom, thus any detached palladium will remain in electrical contact with the cathode.

5. Summary of Results

New isoperibolic calorimeters that are relatively inexpensive have been designed, constructed, and tested using several
different electrolyte systems. These calorimeters show stable heat transfer coefficients that do not change during
electrolysis at high cell currents over long time periods. Initial studies have shown excess power effects for the ND4Cl
+ ND4OD + PdCl, + LiOD/D,0 co-deposition system. No excess power was measured in the corresponding H,O
control study.

Shuttle reactions have been proposed by NRL as an explanation for excess power in co-deposition systems [10].
In our studies, neither calorimetric nor electrochemical measurements have detected any shuttle reactions involving
nitrates or nitrites. Similar results were obtained in studies of chlorates [14]. Furthermore, no excess power was
observed for the NH4Cl + NH4OH + PdCl, + LiOH/H;O control co-deposition system. Another paper in preparation
[16] will focus on co-deposition experiments and the absence of any experimental evidence for the shuttle reaction
hypothesis for excess power in co-deposition systems.
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Appendix Al. Calorimetric Equations

Treating the isoperibolic calorimetric cell as the system of interest, the First Law of Thermodynamics expressed as
power (J/s or W) becomes

Peator (1) = Pe1(1) + Pu(t) + Px(t) + Pgas(1) + Pr(1) + Pc(?) + Pw (?). (A.1)

By definition, Pc,or is the power for the calorimetric cell, Pgp the electrochemical power, Py the internal heater power,
Px any anomalous excess power, Pg, the power carried away by the gas stream exiting the open cell (D2, Oz, D0
vapor), Pr the net power transferred by radiation between the cell and water bath, Pc is the power transferred by
conduction, and Py represents the rate of pressure—volume work by the generated electrolysis gases (D7, O>). Because
both the cell temperature and cell voltage change with time during electrolysis, most of the terms in Eq. (A.1) also
vary with the time (¢). The internal heater power, Py, will be zero except for the time period between turning the heater
on (t1) and off (#;). Typical values for Py, when on, are either 0.2000 W or 0.2500 W. There are often time periods
where Px is zero or constant. As usual in thermodynamics, positive quantities represent power added to the system
(calorimetric cell) and negative quantities represent power given off by the system to the surroundings.
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The mathematical expressions for the terms in Eq. (A.1) are as follows:

Peator = CpM (dT /d1), (A.2)

Ppr = (E — Em1, (A.3)
Poas = —(I/F){[0.5Cp p, + 0.25Cp 0, + 0.75(P/(P* — P))Cp p,0(e) AT

+0.75(P/(P*~P))L}, where AT =T — Ty, (A.4)

Pr = —kr f(T), where f(T) = T*-T}, (A.5)

Pc = —kc(T-Ty), (A.6)

Pw = —RT(dng/dt) = —RT(0.751 /F). (A7)

For this new isoperibolic calorimeter, the heat transfer will be mostly by conduction, hence Pr will be small and
negligible compared with Pc.

The pressure terms in Eq. (A.4) are bolded to minimize confusion with any power terms. Under normal constant
current (/) operation, the terms 7, E, AT, and P will vary with time, . The change of the cell temperature with
time, as given by Pealor in Eq. (A.2), makes Eq. (A.1) a nonlinear, inhomogeneous differential equation. Although
this differential equation can be used directly, numerical integration yields more accurate results (see Fig. 2). The
Pea1or term is obviously larger when the cell temperature is changing more rapidly such as when D;O is replenished or
when the internal heater is turned on (1) or off (f2). The small progressive decrease with time for the cell temperature
(Table 2) is due to the progressive increase of the electrolyte concentration due to electrolysis resulting in an increasing
ionic conductance and hence a decreasing cell voltage and input power (Eq. (A.3)) as shown in Table 2.

The most complicated term, Pgys, is generally small except when the cell temperature exceeds 70°C. The electrolysis
reaction

0.5D20(1) — 0.5D3(g) + 0.250(g) (A.8)

consumes 0.5 mol of D,O and produces 0.5 mol of D, gas and 0.25 mol of O gas per Faraday, F (96485.3415 C mol ™).
The 0.75 mol total of electrolysis gases generated per Faraday also carry away D, O vapor due to the equilibrium vapor
pressure of D20 in the cell, P = Pp,0(g). Using Dalton’s law of partial pressures, the moles of D>O(g) carried away
per Faraday are given by

moles D>O(g) = 0.75(P/(Pp, + Po,)) = 0.75(P/(P* — P)), (A9)
where the gas pressure within the cell, P*, is expressed by
P* = Pp,g) + Po,e) + Ppy0oce (A.10)

and is close to the atmospheric pressure for this open system. This P* term dictates the monitoring of the atmospheric
pressure for highly accurate calorimetric measurements, but this has not been done by most laboratories. The largest
term for Py results from the large enthalpy of vaporization of DO, L =41678.9 J/mol at 101.42°C. Therefore, simpler
versions of Eq. (A.4) are often used such as

Poys = —(0.751/F)(P/(P* — P))[(Cp,Dzo(g)—Cp,DQQ([))AT + L]. (A.11)

Assuming I = 0.2000 A and Ty, = 22.00°C, the Pgys term is —5.6489 mW at T = 40.00°C and increases to —57.8253
mW at 7 = 80.00°C. The term involving the enthalpy of vaporization (L) contributes —4.9103 mW (86.92%) and
—52.9857 mW(91.63%), respectively, at these two cell temperatures. The electrolysis of D, O in the calorimeter causes
the equivalent moles (M) to change with time

M = M°~(1 + B)yIt/2F), (A.12)
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where I is the constant current, § is the fraction of D,O lost by evaporation, and y is the current efficiency for
electrolysis. Thus, a more exact expression used in earlier publication by Fleischmann and Pons is

Peaor = Cpd/dt (MAT) = CoM(dAT /dt) + C, AT (dM/dt) (A.13)
or equivalently

Pealor = Cp[]WO =+ By lt/2F](dAT/dr)
—Co AT (I + B)y1/2F, (A.14)

where AT = T — Ty. For constant Ty,, dAT/dt = dT/dt. Except for small cells and large currents, the simpler
Eq. (A.2) is adequate.

In chemical kinetics, the differential equations for the rates of the reactions are seldom used because the integrated
expressions are much more accurate. The use of numerical integration of the calorimetric data also results in greater
accuracy. Integrals can be numerically evaluated by using the mean value of the function and the integration limits.
Mathematically,

b
f f@)dx = (b —a){fx)), (A.15)

where a and b are the integration limits and ( f (x)) is the mean value of the function. Other approximate integration
methods can also be used such as Simpson’s Rule or the Trapezoidal Rule, but only Eq. (A.15) is, strictly speaking,
correctin that it agrees with the mathematical definition of an integral. The Trapezoidal Rule, however, allows integration
around the discontinuities at ¢t = #; and t = t,. The integrals of power over selected time periods give units of energy
.

The required heat capacities at constant pressure (Cp), enthalpy of vaporization of D0 (L), the vapor pressure
of D>0O (P), and the thermoneutral potential (Ey) are available from thermodynamic tables at 25°C (298.15 K) and
standard pressure. The temperature dependence of these calorimetric parameters at standard atmospheric pressure can
be calculated from the following equations where T is the Kelvin temperature (°C + 273.15).

L = 85263.9 — 173.429T + 0.2586T% — 1.91913 x 107473 — 18055697 ! (in J/mol™"), (A.16)

En = 15318346 — 0.0002067(T — 273.15) (inV), (A.17)
log P = 35.47686 — 3343.937 ' — 10.9 log T + 0.0041645T
+9.14056/(197.397 — T) (Pinatm), (A.18)
Cp.D,0, = 200.13 —495.9 x 10T + 573.07 x 107°7

—16.765 x 10°T~2(inJmol 'K 1), (A.19)

Cp.Dr0, = 26.7006 +21.2897 x 10T + 2.66774 x 10~°7>
+1.2907 x 10°T ~%(inJmol 'K~ 1), (A.20)

Cp.Dyy = 28.9778 — 1.49226 x 107°T +4.14779 x 107°T*
+0.26544 x 1037 ~2(inJmol ~'K™1), (A.21)

Cp.0y = 23.1436 + 18.2628 x 107°T — 6.605 x 10707
+ 12118 x 107 2(inJ mol 'K ). (A22)
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At a typical cell temperature of 60°C (333.15 K) and standard pressure, these calculated values are L = 43672 ]
mol™!, Ey = 1.5194V, P = 0.18317 atm, Cpp,0, = 83.420 J mol~'K™!, Cpp,0,, = 34.660 J mol~'K~!,
Cp.Dsyy = 29.180 Tmol™'K™!, and Gy 0,,, = 29.587 J mol~'K~".

Equations (A.16)—(A.22) look daunting, but they can be handled readily by computers (Excel). These equations,
along with Eqs. (A.2)—(A.7), were always used with the China Lake calorimetry [18].

Appendix A2. List of Symbols

Cp Heat capacity at constant pressure, JK~'mol~!

E Cell potential, V

Ey Thermoneutral potential, V

F Faraday constant, 96 485.3415 C mol !

1 Cell current, A

kc Conductive heat transfer coefficient, WK1

k/C Pseudo-conductive heat transfer coefficient, WK~!
kr Radiative heat transfer coefficient, WK—*

L Enthalpy of evaporation for D0, J mol™!

ng Moles of electrolysis gases, mol

M Water equivalent of the calorimetric cell, mol
P Partial pressure of D0, Pa

P* Atmospheric pressure, Pa

Pc Power transferred by conduction, W

Peator Rate of enthalpy change within the calorimeter, W

Pgr Power input due to electrolysis, W

Pgas Rate of enthalpy transport by the gas stream, W

Py Power input due to the calibration heater, W

Pr Power transferred by radiation, W

Pw Rate of pressure—volume work by the generated gases, W

Px Excess power generated, W

R Gas constant, 8.314472 JK~! mol~!

Ty Temperature of water bath, K

T Temperature of cell, K

AT T-T, K

£ T4 — T} K*

B Fraction of D, O lost by evaporation, dimensionless

y Current efficiency for electrolysis, dimensionless
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